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Outline
• Review last class
• Midterm Exam November 15 covers 

material on differential equations and 
Laplace transforms (no phase plots)

• Overview of numerical solutions
– Initial value problems in first-order 

equations
– Systems of first order equations and initial 

value problems in higher order equations
– Boundary value problems
– Stiff systems and eigenvalues
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Review Last Class
• Phase plots, critical points, and stability
• Look at system of two linear 

homogenous, autonomous equations
– dy/dt = Ay (no function of time)

• Critical points and stability depend on 
matrix eigenvalues which depend on 
determinant properties

• Described various critical points: node, 
center, saddle point and spiral
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Numerical Analysis Problems
• Numerical solution of algebraic 

equations and eigenvalue problems
• Solution of one or more nonlinear 

algebraic equations f(x) = 0
• Linear and nonlinear optimization
• Constructing interpolating polynomials
• Numerical quadrature
• Numerical differentiation
• Numerical differential equations
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Interpolation

• Start with N data pairs xi, yi

• Find a function (polynomial) that can be 
used for interpolation

• Basic rule: the interpolation polynomial 
must fit all points exactly

• Denote the polynomial as p(x)

• The basic rule is that p(xi) = yi

• Many different forms
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Newton Polynomials
• p(x) = a0 + a1(x – x0) + a2(x – x0)(x – x1) 

+ a3(x – x0)(x – x1)(x – x2) + …               
+ an-1(x – x0)(x – x1)(x – x2) … (x – xn-2)
– n – 1 data points numbered 0 to n – 2 

• Terms with factors of x – xi are zero 
when x = xi

– Have p(xi) = yi to find ai, i = 0 to n – 1

• a0 = y0, a1 = (y1 – y0) / (x1 – x0) 
• y2 = a0 + a1(x2 – x0) + a2(x2 – x0)(x2 – x1) 

– Solve for a2 using results for a0 and a1
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Newton Polynomials II

• y2 = a0 + a1(x2 – x0) + a2(x2 – x0)(x2 – x1) 
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• Could continue in this fashion to 
determine coefficients from data 

• Use alternative scheme – not derived 
here – known as divided difference 
table to compute ak from same data
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Divided Difference Table

• Enter data on xi and yi in rows of table 
skipping one row between entries

• Start with yi data as zeroth divided 
difference

• First divided difference, Fi = (yi+1 – yi) / 
(xi+1 – xi)
– Second (or later) divided difference is 

difference of first (or later) differences

– ai coefficients are initial divided differences
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Divided Difference Table
x0 y0 a0

a1

x1 y1 a2

x2 y2  a3

x3 y3

01

01
0 xx

yy
F






12

12
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yy
F






23

23
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yy
F
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FF
S
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S





03

01
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3 xx
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Divided Difference Example
0 0 a0

a1

10 10 a2

20 40  a3

30 100

1
010

010
0 




F

3
1020

1040
1 




F

6
2030

40100
2 




F

1.
020

13
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S

15.
1030

36
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S

600

1

030

1.15.
0 




T
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Divided Difference Example II

• Divided difference table gives a0 = 0, a1

= 1, a2 = .1, and a3 = 1/600

• Polynomial p(x) = a0 + a1(x – x0) + a2(x 
– x0)(x – x1) + a3(x – x0)(x – x1)(x – x2)   
= 0 + 1(x – 0) + 0.1(x – 0)(x – 10) + 
(1/600)(x – 0)(x – 10)(x – 20) = x + 
0.1x(x – 10) + (1/600)x(x – 10)(x – 20)

• Check p(30) = 30 + .1(30)(20) + (1/600) 
(30)(20)(10) = 30 + 60 + 10 = 100 (correct)
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Start at Any Point in Data Table
x-1 y-1

x0 y0 a0

a1

x1 y1 a2

x2 y2  a3

01

01
0 xx

yy
F






12

12
1 xx

yy
F





02

01
0 xx

FF
S






13

12
2 xx

FF
S





03

01
0 xx

SS
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23

23
2 xx

yy
F
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Difference Example from x = 10
0 0

10 10 a0

a1

20 40 a2

30 100  a3

3
1020

1040
0 




F

6
2030

40100
1 




F

15.
1030

36
0 




S

600

1

1040

15.5/1
0 




T

10
3040

100200
2 




F
5

1

2040

610
1 




S

Final data point 
not shown is x 
= 40, y = 200
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Divided Difference Calculation II

• Divided difference table gives a0 = 10, 
a1 = 3, a2 = .15, and a3 = 1/600

• Polynomial p(x) = a0 + a1(x – x0) + a2(x 
– x0)(x – x1) + a3(x – x0)(x – x1)(x – x2)   
= 10 + 3(x – 10) + 0.15(x – 10)(x – 20) + 
(1/600)(x – 10)(x – 20)(x – 30) = x + 
0.1x(x – 10) + (1/600)x(x – 10)(x – 20)

• Check p(40) = 10+3(30)+.15(30)(20) + 
(1/600)(40)(30)(20)=10+90+90+10=200 

(correct)
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Divided Difference Code
for ( i = 0; i < n; i++ )

D[0][i] = y[i];

for ( k = 1; k < n; k++ )
for ( i = 0; i < n – k; i++ )
D[k][i] = ( D[k-1][i+1] –

D[k-1][i] ) / ( x[i+k] – x[i] );

• D[k][i] is ith value of kth divided difference
• Code for n data points (0 to n–1) 
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Constant Step Size
• Divided differences work for equal or 

unequal step size in x
• If x = h is a constant we have simpler 

results
– Fk = yk/h = (yk+1 – yk)/h
– Sk = 2yk/2h2 = (yk+2 – 2yk-1 + yk)/2h2

– Tk = 3yk/6h3 = (yk+3 – 3yk+2 + 3yk+1 – yk)/6h3

– nyk is called the nth forward difference
– Can also define backwards and central 

differences
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Interpolation Approaches
• When we have N data points how do we 

interpolate among them?
– Order N-1 polynomial not good choice
– Use piecewise polynomials of lower order 

(linear or quadratic)
– Can match first and or higher derivatives 

where piecewise polynomials join
– Cubic splines are piecewise cubic 

polynomials that match first and second 
derivatives [as well as (xk,yk) values]

Cubic Spline Overview

• Have N cubic polynomials, ai + bix + cix2

+ dix3, with end point of 1 polynomial the 
start of next, requires N + 1 data points
– Data points numbered 0 to N with 

polynomials numbered 1 to N

• Need 4N equations to get N values for 
polynomial coefficients: ai, bi, ci, and di

• Each polynomial fits data points at ends: 
pk(xk-1) = yk-1 and pk(xk) = yk, k = 1, N

18
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Cubic Spline Overview II

• Have continuity of first and second
derivatives: pk-1’(xk) = pk’(xk) and pk-1’’(xk) 
= pk’’(xk)

• Matching data points gives 2N equations
and derivative continuity gives 2N – 2

• Have 4N – 2  equations for 4N unknown 
polynomial coefficients

• Different models of end point behavior
used to provide additional 2 equations
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Splines in MATLAB
• Use spline function in MATLAB to get 

one or more interpolated points
– xIn is array of y data for spline fit

– yIn is array of x data for spline fit

– Apply spline to x which can be a single data 
point or an array using command below

– Generally uses not-a-knot end slopes

• Also has routine unmkpp to get details
of resulting spline coefficients

20

>> spline(xIn, yIn, x)
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Cubic Spline Interpolation
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Newton Interpolating Polynomial
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High-order polynomials can 
give unrealistic fits to data
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Polynomial Applications
• Data interpolation
• Approximation functions in numerical 

quadrature and solution of ODEs
• Basis functions for finite element 

methods
• Can obtain equations for numerical 

differentiation
• Statistical curve fitting (not discussed 

here) usually used in practice 
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Derivative Expressions

• Obtain from differentiating interpolation 
polynomials or from Taylor series

• Series expansion for f(x) about x = a
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and 0! = 1

• What is error from truncating series?
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Truncation Error

• If we truncate series after m terms
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Derivative Expressions

• Look at finite-difference grid with equal 
spacing: h = x so xi = x0 + ih

• Taylor series about x = xi gives f(xi + kh) 
= f[x0 + (i+k)h] = fi+k in terms of f(xi) = fi

.....)(
!3

1
)(

!2

1
)()( 3

3

3
2

2

2




kh
dx

fd
kh

dx

fd
kh

dx

df
xfkhxf

iii xxxxxx
ii

kiii xx

n

n
n

ki

xx

i
xx

i dx

fd
f

dx

fd
f

dx

df
f







 ... 
2

2
'''

• Compact derivative notation
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Derivative Expressions II

• Combine all definitions for compact 
series notation
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Derivative Expressions III

• Apply general 
equation for k 
= 1 and k = –1
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Derivative Expressions IV

• Subtract fi+1 and fi-1 expressions
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Order of the Error

• Forward and backward derivative have 
error term that is proportional to h

• Central difference error is proportional 
to h2

• Error proportional to hn called nth order

• Reducing step size by a factor of 
reduces nth order error by n

n

h

h










1

2
12 



Basic Concepts in Numerical Analysis November 6, 2017

ME 501A Seminar in Engineering 
Analysis Page 6

31

Order of the Error Notation
• Write the error term for nth error term as 

O(hn) 
– Big oh notation, O, denotes order
– Recognizes that factor multiplying hn may 

change slightly with h
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Higher Order Derivatives

• Add fi+1 and fi-1 expressions; solve for 
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Higher Order Directional

• We can get higher truncation error 
expressions at the expense of more 
computations

• Get second order forward and backward 
derivative expressions from previous 
results and fi+2 and fi-2, respectively

• Combine  fi+2 and fi-2 equations with 
previous expressions for fi+1 and fi-1 to 
eliminate first order error term
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Specific Taylor Series

• General 
equation
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Second Order Forward

• Subtract  4fi+1 from fi+2 to eliminate h2

term
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Second Order Backwards

• Add  4fi-1 to –fi-2 to eliminate h2 term
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Other Derivative Expressions
• Can continue in this fashion

– Write Taylor series for fi+1, fi-1, fi+2, fi-2, fi+3,   
fi-3, etc.

– Create linear combinations with factors that 
eliminate desired terms

– Eliminate fi term to obtain central difference
– Keep only terms in fk with k  i for forward 

difference expressions
– Keep only terms in fk with k  i for forward 

difference expressions
– Results in numerical analysis texts/online

Other Derivative Formulas
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Order of Error Examples
• Table 1 in online notes shows error in 

first derivative for ex around x = 1
– Using first- and second-order forward and 

second-order central differences
– Step h = 0.4, 0.2, and 0.1
– Error ratio for doubling step size

• 4.01 to 4.02 for central differences
• 2.07 to 2.15 for first-order forward differences
• 4.32 to 4.69 for second-order forward

)log(

)log(

)log()log(

)log()log(

log

log

12

12

1

2

1

2

hd

d

hh
h

h
n
























40

Roundoff Error
• Possible in derivative expressions from 

subtracting close differences
• Example f(x) = ex: f’(x)  (ex+h – ex-h)/(2h) 

and error at x = 1 is (e1+h – e1-h)/(2h) - e

3105.4718282.2
)1.0(2

722815.2004166.3 


 xE

9105.4597182818284.2
)0001.0(2

7180100139.27185536702.2 


 xE

9109.5718281828.2
)0000001.0(2

03887182815566.287247182821002.2 


 xE

Second order error
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Figure 2-1. Effect of Step Size on Error
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Richardson Extrapolation
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• Uses finite-difference method with two 
step sizes to get improved accuracy

• Start with E = F(h) + TE = F(h) + O(hn)
– E is exact result

– F(h) is finite difference approximation with 
step size h

– Truncation error, TE, is O(hn)

– Actually have an infinite series for error
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Richardson Extrapolation II
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• Look at evaluating error with two step 
sizes, h and kh
– Exact value will not change

– Create sum to display first error term
      










1nm

m
m

n
n

nm

m
m hAhAhFhAhFTEhFE

       





1nm

m
m

n
n khAkhAkhFTEkhFE 

       1 nn
n

n
n

nnn hOkhAhAkkhFhFkEEk

– Multiply first equation by kn and subtract the 
second equation to eliminate the An term

May be hn+2

Richardson Extrapolation III
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• Solve equation from previous slide for E
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lation, RE, has a higher order of the error
– Truncation error for RE shown below
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Richardson Extrapolation IV
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• What does this mean?
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• E is the exact result, F(h) is a finite 
difference result with step size h
– If we have two nth-order finite difference 

results, with two step sizes h and kh, we 
can use this formula to get an improved 
result with an error order of n + 1 (or higher 
if the error term has every other power of h)

Richardson Extrapolation V
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• Richardson extrapolation for forward 
dcos(x)/dx at x = 1 and h = 0.1 & h = 0.2
– What are k and n? 
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• Extrapolation closer to correct value of 
dcos(x)/dx|x=1 = –sin(1) = –0.84147098
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Richardson Extrapolation VI
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• Richardson extrapolation for central 
dcos(x)/dx at x = 1 and h = 0.1 & h = 0.2
– What are k and n? 
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• Extrapolation closer to correct value of 
dcos(x)/dx|x=1 = –sin(1) = –0.84147098
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